Validation of Hill-type muscle models in relation to neuromuscular recruitment and force-velocity properties: predicting patterns of in vivo muscle force.
نویسندگان
چکیده
We review here the use and reliability of Hill-type muscle models to predict muscle performance under varying conditions, ranging from in situ production of isometric force to in vivo dynamics of muscle length change and force in response to activation. Muscle models are frequently used in musculoskeletal simulations of movement, particularly when applied to studies of human motor performance in which surgically implanted transducers have limited use. Musculoskeletal simulations of different animal species also are being developed to evaluate comparative and evolutionary aspects of locomotor performance. However, such models are rarely validated against direct measures of fascicle strain or recordings of muscle-tendon force. Historically, Hill-type models simplify properties of whole muscle by scaling salient properties of single fibers to whole muscles, typically accounting for a muscle's architecture and series elasticity. Activation of the model's single contractile element (assigned the properties of homogenous fibers) is also simplified and is often based on temporal features of myoelectric (EMG) activation recorded from the muscle. Comparison of standard one-element models with a novel two-element model and with in situ and in vivo measures of EMG, fascicle strain, and force recorded from the gastrocnemius muscles of goats shows that a two-element Hill-type model, which allows independent recruitment of slow and fast units, better predicts temporal patterns of in situ and in vivo force. Recruitment patterns of slow/fast units based on wavelet decomposition of EMG activity in frequency-time space are generally correlated with the intensity spectra of the EMG signals, the strain rates of the fascicles, and the muscle-tendon forces measured in vivo, with faster units linked to greater strain rates and to more rapid forces. Using direct measures of muscle performance to further test Hill-type models, whether traditional or more complex, remains critical for establishing their accuracy and essential for verifying their applicability to scientific and clinical studies of musculoskeletal function.
منابع مشابه
The Changes of Leg Musclus Activities Following Increase of Gait Velocity
Purpose: Motor control evaluation and analysis of it"s specifications for diagnosis of neuromuscular diseases is new approach in clinical electroneurophysiology, that is based on the changes of electromyography responses and classic reflexes in this field. In this study quantitative power spectrum frequency used for changes of motor control strategies. Materials and Methods: Twenty five health...
متن کاملمعرفی روش استفاده از سیگنال مکانومیوگرام در ارزیابی عملکرد عضلات
Background and aims Recordings of electrical activity in the muscle and surface electromyography (EMG) have been widely used in the field of applied physiology. In parallel to recording of the EMG, the detectable low-frequency vibration signal generated by the skeletal muscle has been known and well documented. As the nature of the signal has been progressively revealed, the term of mec...
متن کاملHill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates.
This study evaluated the accuracy of Hill-type muscle models during movement. Hill-type models are ubiquitous in biomechanical simulations. They are attractive because of their computational simplicity and close relation to commonly measured experimental variables, but there have been surprisingly few experimental validations of these models during functionally relevant conditions. Our hypothes...
متن کاملSpreading out Muscle Mass within a Hill-Type Model: A Computer Simulation Study
It is state of the art that muscle contraction dynamics is adequately described by a hyperbolic relation between muscle force and contraction velocity (Hill relation), thereby neglecting muscle internal mass inertia (first-order dynamics). Accordingly, the vast majority of modelling approaches also neglect muscle internal inertia. Assuming that such first-order contraction dynamics yet interact...
متن کاملHill-type muscle model with serial damping and eccentric force-velocity relation.
Hill-type muscle models are commonly used in biomechanical simulations to predict passive and active muscle forces. Here, a model is presented which consists of four elements: a contractile element with force-length and force-velocity relations for concentric and eccentric contractions, a parallel elastic element, a series elastic element, and a serial damping element. With this, it combines pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative and comparative biology
دوره 54 6 شماره
صفحات -
تاریخ انتشار 2014